Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expanding genomics of mycorrhizal symbiosis.

Identifieur interne : 000203 ( Main/Exploration ); précédent : 000202; suivant : 000204

Expanding genomics of mycorrhizal symbiosis.

Auteurs : Alan Kuo [États-Unis] ; Annegret Kohler [France] ; Francis M. Martin [France] ; Igor V. Grigoriev [États-Unis]

Source :

RBID : pubmed:25408690

Abstract

The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

DOI: 10.3389/fmicb.2014.00582
PubMed: 25408690
PubMed Central: PMC4219462


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expanding genomics of mycorrhizal symbiosis.</title>
<author>
<name sortKey="Kuo, Alan" sort="Kuo, Alan" uniqKey="Kuo A" first="Alan" last="Kuo">Alan Kuo</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Energy Joint Genome Institute Walnut Creek, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Energy Joint Genome Institute Walnut Creek, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Annegret" sort="Kohler, Annegret" uniqKey="Kohler A" first="Annegret" last="Kohler">Annegret Kohler</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy</wicri:regionArea>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martin, Francis M" sort="Martin, Francis M" uniqKey="Martin F" first="Francis M" last="Martin">Francis M. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy</wicri:regionArea>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Energy Joint Genome Institute Walnut Creek, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Energy Joint Genome Institute Walnut Creek, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25408690</idno>
<idno type="pmid">25408690</idno>
<idno type="doi">10.3389/fmicb.2014.00582</idno>
<idno type="pmc">PMC4219462</idno>
<idno type="wicri:Area/Main/Corpus">000189</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000189</idno>
<idno type="wicri:Area/Main/Curation">000189</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000189</idno>
<idno type="wicri:Area/Main/Exploration">000189</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expanding genomics of mycorrhizal symbiosis.</title>
<author>
<name sortKey="Kuo, Alan" sort="Kuo, Alan" uniqKey="Kuo A" first="Alan" last="Kuo">Alan Kuo</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Energy Joint Genome Institute Walnut Creek, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Energy Joint Genome Institute Walnut Creek, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Annegret" sort="Kohler, Annegret" uniqKey="Kohler A" first="Annegret" last="Kohler">Annegret Kohler</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy</wicri:regionArea>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martin, Francis M" sort="Martin, Francis M" uniqKey="Martin F" first="Francis M" last="Martin">Francis M. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy</wicri:regionArea>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
<wicri:noRegion>Université de Lorraine Nancy</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Energy Joint Genome Institute Walnut Creek, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Energy Joint Genome Institute Walnut Creek, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25408690</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Expanding genomics of mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>582</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2014.00582</ELocationID>
<Abstract>
<AbstractText>The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>United States Department of Energy Joint Genome Institute Walnut Creek, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kohler</LastName>
<ForeName>Annegret</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Francis M</ForeName>
<Initials>FM</Initials>
<AffiliationInfo>
<Affiliation>UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de Lorraine Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grigoriev</LastName>
<ForeName>Igor V</ForeName>
<Initials>IV</Initials>
<AffiliationInfo>
<Affiliation>United States Department of Energy Joint Genome Institute Walnut Creek, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Glomus</Keyword>
<Keyword MajorTopicYN="N">Laccaria</Keyword>
<Keyword MajorTopicYN="N">Rhizophagus</Keyword>
<Keyword MajorTopicYN="N">Tuber</Keyword>
<Keyword MajorTopicYN="N">mycorrhizae</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25408690</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2014.00582</ArticleId>
<ArticleId IdType="pmc">PMC4219462</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22673109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1991-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Jun;48(6):573-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21094264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e39597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22815710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Jun;48(6):592-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Dec;16(1):19-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Jun;15(6):1853-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23379715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Feb;17(2):202-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14964534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21352231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):710-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20961294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2012 Mar;49(3):199-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2012 May 22;279(1735):2003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22171078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Nov;22(11):1412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1998 Nov 19;222(2):203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9831654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17995919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Jul;22(1):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1319284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2013 Dec 6;12 (12 ):5349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24147936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2012 Feb;116(2):261-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22289772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 Dec;207(2):296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9951730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):950-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Argent Microbiol. 2005 Apr-Jun;37(2):69-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16178458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Aug;52(2):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17589849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2013 Apr;53:10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23454547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Jun;48(6):585-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20884368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):736-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21058951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2013 Mar;87:23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23276677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jan;53(366):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2011 Apr;57(2):75-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21132299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):176-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23574460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1468-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):2018-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan;10(1):e1004078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Apr;20(4):217-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):343-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):391-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):329-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Dec;72(18):2317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21945278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2002 Jun;41(3):183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12174821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e40197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2011 May 13;5:70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Jul;11(7):1878-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19397683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Jun;48(6):561-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 19;8(11):e80729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 15;464(7291):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):254-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Jan;7(1):12-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22301958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2012 Jun;58(3):165-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22481122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):736-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jul 06;5(7):e9780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20625404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2012 Jan 1;11(1):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22074047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(2):181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(2):365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):751-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):599-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 Jul;48(1):69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15868150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2013 Jun;5(3):353-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Jan;27(1):14-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21112661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Kuo, Alan" sort="Kuo, Alan" uniqKey="Kuo A" first="Alan" last="Kuo">Alan Kuo</name>
</region>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Kohler, Annegret" sort="Kohler, Annegret" uniqKey="Kohler A" first="Annegret" last="Kohler">Annegret Kohler</name>
</noRegion>
<name sortKey="Martin, Francis M" sort="Martin, Francis M" uniqKey="Martin F" first="Francis M" last="Martin">Francis M. Martin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000203 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000203 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25408690
   |texte=   Expanding genomics of mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25408690" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020